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Variation of the stress intensity factor along the crack
front of interacting semi-elliptical surface cracks

N.-A. Noda, K. Kobayashi, T. Oohashi

Summary In this study, the interaction between two semi-elliptical co-planar surface cracks is
considered when Poisson’s ratio v = 0.3. The problem is formulated as a system of singular
integral equations, based on the idea of the body force method. In the numerical calculation,
the unknown density of body force density is approximated by the product of a fundamental
density function and a polynomial. The results show that the present method yields smooth
variations of stress intensity factors along the crack front very accurately, for various geo-
metrical conditions. When the size of crack 1 is larger than the size of crack 2, the maximum
stress intensity factor appears at a certain point, ; = 177°, of crack 1. Along the outside of
crack 1, that is at §; = 0 ~ 90°, the interaction can be negligible even if the two cracks are
very close. The interaction can be negligible when the two cracks are spaced in such a manner
that their two closest points are separated by a distance exceeding the small crack’s major
diameter. The variations of stress intensity factor of a semi-elliptical crack are tabulated and
charted.

Key words Elasticity, stress intensity factor, body force method, semi-elliptical surface
crack, interaction, singular integral equation

1

Introduction

Elliptical and semi-elliptical three-dimensional (3D) cracks are fundamental and useful in
evaluating the strength of structures and engineering materials. However, it is difficult to
determine smooth variation of the stress intensity factor (SIF) along the front of a 3D surface
crack. In previous studies, interaction between 3D cracks was considered by using FEM
analysis, [1-3] and by an alternative method, [4]. The interaction of two semi-elliptical cracks
was also considered by using the body force method, when Poisson’s ratio v = 0, [5, 6].
Recently, in order to analyze such 3D cracks accurately, the body force method, (7, 8], has been
widely applied due to its efficiency, [9, 10]. However, to obtain a smooth distribution of the SIF
is especially difficult for the practical case of v = 0.3, because the SIF rapidly changes near the
free surface, [11-13].

In a preceding paper, numerical solutions of the singular integral equation of the body force
method in a single 3D crack has been discussed, [14]. Unknown body force densities were
approximated by the products of fundamental density functions and polynomials. The results
showed that the analytical method yields a smooth variation of the SIF with a higher accuracy
as compared to other methods. In this study, the method will be applied to the interaction
between two semi-elliptical cracks when v = 0.3. With varying of the spacing and the shape of
the ellipse, the variation of the SIF will be discussed.
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2

Theory and solution

Consider a semi-infinite body under uniform tension containing two semi-elliptical cracks as
shown in Fig. 1. Here, the xz-plane is free from stress, and the two semi-elliptical cracks, whose
principal diameters are (2a,,2b;) and (2a,, 2b,), are embedded in the xy-plane. The body force
method is used to formulate the problem as a system of singular integral equations, whose
unknowns are densities of body forces f;(¢,,1;) and f;(¢,,7,). Here, (&, miy () is a (xi, y4,2i)
coordinate of the point where the body force is applied at the i-th crack. The body force density
is equivalent to a crack opening displacement U, (x,, ;) [15],
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Equation (1a) enforces boundary conditions at the prospective boundary S; for cracks; that is,
0, = 0. Equation (1) includes singular terms in the form of 1/7%,1/5, corresponding to the
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Fig. 1. Two semi-elliptical surface cracks in a
semi-infinite body under tension

terms for an elliptical crack in an infinite body. Therefore, the integration should be interpreted
in the Hadamard’s sense, [16], in the region S;. The notation K{‘ (&1, 1, %1, y1) refers to a
function that satisfies the boundary condition for the free surface, and u, refers to a dis-
placement in the z direction.

3

Numerical solution of singular integral equations

In the conventional body force method [7, 8], the crack region is divided into several elements,
and unknown functions of the body force densities are approximated by using fundamental
density functions and step functions. However, the expressions using step functions give rise to
singularities along the element boundaries, and they tend to deteriorate the accuracy and
validity in sophisticated problems. In the present analysis, the following expressions have been
used to approximate the unknown functions as continuous functions. First, we put
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Here, w;(&},7}) is called a fundamental density function of the body force, which exactly
expresses the stress field due to an elliptical crack in an infinite body under uniform tension o,
and leads to solutions with high accuracy. In this calculation, we put o = 1. Using expression
(2), Egs. (1) are expressed as
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whose unknowns are F;(¢},n}),i = 1,2, which are called weight functions.
The following expressions can be applied to approximate unknown functions
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where

Qo(&5, 1) = 1, Qu(&15) =ty -, Quea (83, 15) = (=&3), -, Q&) = (—85)" -

Using the approximation method mentioned above, we obtain the following system of algebraic
equations for the determination of unknown coefficients a;, f;, i = 1,2,...,1,
1 = (1/2)(n + 1)(n + 2), which can be determined by selecting a set of collocation points:
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In Egs. (6), Afl‘,. and A);Zz cannot be evaluated by ordinary numerical procedure because they have
hypersingularites of the form r=%. They can be evaluated in the similar way as in [14, 17].
Figure 2 indicates boundary collocation points. In the (x}, y;)-plane, where x; = x:/a:, y; = yi/b;,
the boundary conditions are considered at the intersection of the mesh whose interval is 0.02
within the region x> + y* < 1 and y > 0. On the line y’ = 0, some integrals in Eq. (6) cannot be
calculated; then, the boundary conditions are considered on the line y’ = 0.015 instead of y’ = 0.
In solving the algebraic Eq. (5), the least-square regression method is applied to minimize the
residual of stresses at the collocation points.

4

Numerical results and discussion

Numerical calculations have been carried out at changing » in Egs. (4) for b;/a; = 0.5,1.0. The
Poisson’s ratio is assumed to be 0.3. Numerical integrals have been performed using scientific
subroutine library (FACOM SSL II DAQE etc.). The convergence of the results and compliance
of the boundary conditions are considered in a similar way as in [14]. It is found that when
n = 25, the values of Fj;(;) have good convergence to the third digit, and the remaining stress
o, is less than 3 x 1073 throughout the crack surface. However, it should be noted that the
singularity changes its order at the free surface, [11-13], and the numerical values of the SIF
may be not reliable at f; = 0 and 180°. In demonstrating the numerical results of the SIF
Kii(B,), the following dimensionless factor F;;(f;) will be used:



0.02

—] et

Y.
i :“” ll.o :=!%‘““.‘=:
: : i
e
iEt E_
ﬁ o | 0.02
it ST i T Fig. 2. Boundary collocation points
-1.00 0 1.00
xl ) é-!
A ED 2 1/4
K[i(ﬁi) Fl(éi’ ni)'é’:cos Bini=sinf; | . 5 bi 2
Fi(B;) = = - : sin“ f§; + (| — } cos” f; . 7
ll(ﬁl) O'go\/ﬂ_b, ® :31 a; ﬁl ( )

4.1 Two identical cracks (a4 = a;, b, = b; in Fig. 1)

Table 1 gives the values of Fj;( ;) for two identical cracks. The results for a single semi-elliptical
crack, [12], are indicated in Table 1 as A = 2a;/d — 0. Figure 3 is a plot of the results of
Table 1. The maximum SIF appears at ; = 177°, similarly to the case of a single crack. Figure 4
shows the interaction factor defined as

Table 1. Values of Fj;(§;) 1
of two identical semi- S
elliptical cracks, By © 0 0.667 0.800 0.887 0.900
Fi(B) = Ki(B))/o°VTbi  (a) byla, = byla, = 1
1 0.742 0.748 0.751 0.755 0.755
2 0.746 0.752 0.755 0.759 0.759
3 0.748 0.754 0.757 0.761 0.761
4 0.746 0.752 0.755 0.759 0.759
5 0.742 0.748 0.751 0.754 0.755
6 0.738 0.743 0.747 0.750 0.751
7 0.733 0.738 0.742 0.745 0.746
8 0.729 0.734 0.738 0.741 0.742
9 0.725 0.730 0.734 0.737 0.738
10 0.721 0.726 0.730 0.733 0.734
15 0.708 0.713 0.716 0.720 0.720
30 0.682 0.687 0.690 0.694 0.694
45 0.669 0.674 0.678 0.681 0.682
60 0.663 0.668 0.672 0.675 0.676
75 0.659 0.665 0.669 0.673 0.674
90 0.659 0.665 0.670 0.675 0.676
105 0.659 0.667 0.673 0.680 0.682
120 0.663 0.672 0.681 0.691 0.693
135 0.669 0.681 0.694 0.711 0.713
150 0.682 0.697 0.717 0.745 0.750
165 0.708 0.727 0.754 0.802 0.813
170 0.721 0.741 0.771 0.826 0.838
171 0.725 0.745 0.776 0.831 0.844
172 0.729 0.749 0.780 0.837 0.850
173 0.733 0.754 0.785 0.843 0.856
174 0.738 0.759 0.791 0.849 0.862
175 0.742 0.763 0.795 0.854 0.867
176 0.746 0.767 0.800 0.859 0.872
177 0.748 0.770 0.802 0.861 0.875
178 0.746 0.768 0.800 0.859 0.872

179 0.742 0.764 0.796 0.855 0.868




Table 1. (Continued) 1

B, ©) 0 0.8 0.9
(b) b‘/al = bz/az =05
1 0.710 0.713 0.714
2 0.704 0.707 0.708
3 0.702 0.705 0.706
4 0.700 0.703 0.704
5 0.698 0.701 0.702
6 0.696 0.699 0.700
7 0.694 0.697 0.698
8 0.692 0.695 0.696
9 0.691 0.694 0.695
10 0.690 0.693 0.694
15 0.694 0.696 0.697
30 0.738 0.741 0.743
45 0.795 0.799 0.800
60 0.843 0.847 0.849
75 0.873 0.879 0.881
90 0.883 0.890 0.894
105 0.873 0.882 0.887
120 0.843 0.854 0.862
135 0.795 0.810 0.822
150 0.738 0.757 0.777
165 0.694 0.716 0.747
170 0.690 0.714 0.748
171 0.691 0.715 0.750
172 0.692 0.716 0.752
173 0.694 0.718 0.755
174 0.696 0.721 0.758
175 0.698 0.723 0.761
176 0.700 0.725 0.763
177 0.702 0.728 0.766
178 0.704 0.730 0.769
179 0.710 0.736 0.776
_Fu(B) .
Vi = - 172 ) (8)
Fro(B)

where Fjo(f) are the results for a single crack, 4 = 2a;/d — 0, see Table 1.

The interaction factor 7; is then normalized by Fjo(f) for a single semi-elliptical crack.
From Fig. 4, it is found that along the outside of crack 1, namely at f; =0 ~ 90°, the
interaction is less than 3 percent, even when A = 0.9. When / = 0.667, the interaction is less
than about 3% even at ; = 180°. The interaction at b/a = 0.5 is smaller than the one at
b/a=1.

In the previous analysis, [5, 6], with Poisson’s ratio v = 0, it was concluded that the inter-
action can be neglected when the two cracks are spaced in such a manner that their two closest
points are separated by a distance exceeding the smaller crack’s largest axis. Figure 4 indicates
that the conclusion for v = 0 can be applied to the case when v = 0.3.

4.2

Two different cracks {a, 2 a;, b, 2 b, in Fig. 1)

Figure 5 shows the values of y; and y, when a;/a, = 0.5 is fix at a varying ligament distance ea;.
By decreasing the value of ¢, the value of y; increases locally in the region 120 < 8, < 180°%
however, the value of y, increases in the whole range. Although the y, value is larger than the y,
value, the maximum SIF appears at a certain point, f; = 177°, of crack 1 because the size of
crack 1 is larger. Along the outside region 8, = 0 ~ 90° of crack 1, the interaction can be
neglected even when ¢ = 0.25.

Figures 6 and 7 give the values of 7, and y, for fixed ligament distances, ¢ = 0.5 and ¢ = 0.25
respectively, with the varying value of a;/a,. From Figs. 4-7, it may be concluded that the effect
of crack 2 on the maximum K;(f) appears at 8, = 177° of crack 1. It can be neglected if the two
cracks are spaced in such a manner that their two closest points are separated by a distance
exceeding the small crack’s major diameter.
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5
Conclusions

In this paper, a singular integral equation method is applied to calculate the variation of the SIF
along the crack front of two co-planar semi-elliptical surface cracks. The conclusions can be
made as follows:

(1) The unknown function of the body force density was approximated by the product of a
fundamental density function and a weight function. The present method gives rapidly
converging numerical results and smooth variations of the SIF along the crack front. The
boundary condition was found to be satisfied within the error of 3 x 10~ throughout the
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Fig. 7a, b. Variation of a y, and b y, of two semi-circular cracks when ¢ = 0.25

crack surface. The variations of the SIF of the semi-elliptical cracks were tabulated and
charted.

(2) When the size of crack 1 is larger than the size of crack 2, the influence of crack 1 on crack
2 is larger than the opposite. However, since the size of crack 1 is larger, the maximum SIF
appears at a certain point, f; = 177°, of crack 1. Along the outside of crack 1, that is for
B, = 0 ~ 90°, the interaction can be negligible even if the cracks are close enough.

(3) The interaction between crack 1 and crack 2 can be negligible when the two cracks are
spaced in such a manner that their two closest points are separated by a distance exceeding
the small crack’s major diameter.
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